
Open Forum

26 CROSSTALK The Journal of Defense Software Engineering September 2002

Aquestion that often arises when
attempting to convince a management

team or an engineering staff to adopt the
Team Software ProcessSM (TSPSM), or any
other process improvement program is:
“How much overhead will it add?”

This is generally not an easy question
to answer since it is unlikely that the ques-
tioner knows how much overhead, beyond
perhaps a general accounting figure, is
associated with an organization’s current
practices, particularly at the project-team
level. Thus, the question of how much
overhead will be added cannot be
answered since it is not known how much
overhead there was in the first place; a
large part of that team-level overhead will
likely be replaced by the TSP. Also, it
seems somewhat ironic that this question
arises from the same mindset that trims
administrative and support staff, allowing
managers and developers to answer their
own phones and make their own copies,
which seems like true overhead indeed.

For the sake of argument and part one
of this article, let us suppose that the ques-
tion is legitimate at face value. Part two of
this article will address a few of the rele-
vant benefits of using the TSP. Finally the
question of process overhead itself will be
examined.

Part One:The TSP Overhead
We need a counting standard to begin the
analysis of the amount of the TSP over-
head. We will assume 52 weeks per year,
five working days in a week, and eight
hours per day for a 40-hour week. That
gives us 260 days or 2,080 hours per ideal
developer-year.

The TSP calls for an all-hands team
planning session (called a launch) that lasts
for four days at the beginning of a project.
Re-launches of up to three days each hap-
pen every three or four months. Let us
assume that a full four-day launch happens
annually, and a full three-day re-launch
every quarter thereafter. This totals 13 days
per developer, exactly 5 percent of the
ideal developer-year.

At the end of every launch phase, the
TSP calls for a post-mortem meeting to

consolidate the data gathered and compare
it against the launch estimates. The post-
mortem also allows the team to figure out
how the processes that they used helped or
hindered in getting the job done, and to
identify process adjustments to be imple-
mented the next time. Post-mortems
should last a day or less. Let us assume a
full day for the entire team once a quarter,
or four days per year. This is slightly more
than 1.5 percent of a developer-year.

Weekly status meetings are also
required. If the TSP team is reasonably
efficient in running its meetings, most

teams of, say, 10 to 12 people, can conduct
them in an hour or less. Smaller teams can
take less time, and larger teams can take a
little longer, but if a meeting is running
more than 90 minutes, either the team
needs some training in meeting facilitation,
or the team is just too big. Weekly meeting
time equals one hour per week on average,
or 2.5 percent of a developer-year.

The amount of time spent gathering
data for the TSP is often questioned, so let
us examine that. An entry in the time log,
if done by hand on paper, takes about 15
seconds, counting start time, stop time,
and interrupts as a single entry on one line.
A person probably makes between 10 and
12 entries per day on average. It is a lot less

tedious if you are using the SEI-supplied
TSP tool or a freeware/shareware pro-
gram, and there are some nice time-track-
ing programs available for your favorite
hand-held device. Some organizations
have developed their own tools for this
purpose. [In case you were wondering, the
Software Engineering Institute (SEI) does
not care which tool you use, as long as you
report specified summaries of the gath-
ered data back to the SEI.]

If you are using anything besides a tool
that allows direct consolidation with the
rest of the team’s data, it should take about
five minutes to transfer your time log
entries daily. (If you wait until the end of
the week, it tends to be tedious and inac-
curate. Do not do that!) Set transfer time at
10 minutes a day, 12 minutes to make the
math easy. Five days times 12 minutes per
day equals one hour per week. That is
another 2.5 percent, but it is that high only
if you do it by hand first and then transfer,
less time otherwise.

Estimating the time spent logging
defects can be tricky. Defects found in per-
sonal reviews or team inspections tend to
take less time to log since, by definition,
these are for things that you are looking
for specifically. Set 30 seconds or less to
log a defect found in reviews/inspections
or by the compiler, which after all is telling
you what the defect is. In integration and
test phases, admittedly it can take a little
longer to log a defect, but since you have
relatively few of these (due to the great job
you did in your reviews and inspections),
the time spent here should not be too
onerous. Even at two minutes per defect,
that is plenty of time. On average, my
informed guess is about one minute to log
a defect. At 10,000 lines of code (LOC)
per programmer-year (a fairly productive
person) and an average of 100 defects per
1,000 LOC (KLOC), that is about 1,000
defects or about 1,000 minutes. To make
the math easier, let us round up to 1,200
minutes or 20 hours per year, or slightly
less than 1 percent overhead attributable to
defect data gathering.

The time spent on the TSP role man-
ager tasks is difficult to estimate, in part

TSP: Process Costs and Benefits
Jim McHale

Software Engineering Institute

The Team Software ProcessSM (TSPSM), like other process improvement paradigms, is often challenged on the grounds that it
adds overhead to already burdened developers. However, the TSP’s overhead is readily quantified and justified by published
results. One might also question the use of the term “overhead” when referring to necessary project tasks.

“If you question the
value of removing
defects early via

inspection, you should
not even consider using

the TSP or any
other improvement
paradigm based on
CMM principles.”

TSP: Process Costs and Benefits

September 2002 www.stsc.hill.af.mil 27

because the actual duties of each role are
very idiosyncratic to a particular team on a
particular project in a particular organiza-
tion. SEI guidance is for one to two hours
per week. Two hours a week seems fairly
high as an average weekly value, but even
at that we are talking about another 5 per-
cent overhead.

This analysis does not accept the
premise that personal reviews or team
inspections should be treated as overhead.
If you question the value of removing
defects early via inspection, you should
not even consider using the TSP or any
other improvement paradigm based on
Capability Maturity Model® (CMM®) prin-
ciples. CMM was developed as an instanti-
ation of total quality management meth-
ods applied specifically to software devel-
opment [1]. The basic tenet is that it is
generally faster and cheaper to find defects
earlier in the process rather than later.
Also, if reviews and inspections are done
properly, most defects should be found at
that time and logged when they are fixed,
and we certainly should not count defect-
logging time twice. Therefore, in the TSP
implementation of CMM principles,
reviews and inspections are an integral
part of the process, and not overhead.

The overhead numbers are summed
up in Table 1. Is 17.5 percent a lot? I can’t
say. I contend that the question is irrele-
vant unless you know what you get in
return.

Part Two:The TSP Upside
The most recently published example that
I can find on the benefits of using the TSP
is from a Honeywell presentation at the
2002 Software Engineering Process
Group conference [2]. Pavlik and Riall
claim a better-than-70-percent software
productivity increase from one release of
an avionics control system to the next,
with a total of 22 percent savings in total
systems and software effort.

While their delivery was on time, even
more significant is that the quality of their
delivered product was 10 times better than
the previous release, while the delivered
functionality was three times what was
originally planned. I would say that a 17.5
percent process overhead for the TSP was
more than worth it to Honeywell.

At the same conference, a presentation
by John Ciurczak of EBS Dealing
Resources claimed a “37.5 percent reduc-
tion in execution stage cycle” [3]. The exe-
cution stage, in this instance, refers to the
time from when the business case for the
project was approved, until the time that
the product was tested and ready to ship.

That reduction was entirely attributable to
fewer defects in the EBS certification test
phase, which is required for the foreign
currency exchange services that EBS pro-
vides. Ciurczak also showed that the devel-
opment activities prior to certification
testing took just about as long with TSP
practices as without. EBS probably cannot
decide if that 17.5 percent was overhead,
or just a normal and acceptable cost of
doing a project.

In 2000, Don McAndrews of SEI
published a summary of early results of
using the TSP and its companion technol-
ogy, the Personal Software ProcessSM [4].
Unfortunately, productivity was not one of
the numbers available for comparison.
However, the before-and-after compar-
isons for cost and schedule deviation,
defect density in test, and system test time
per KLOC are usually cited by me and my
SEI colleagues to ask a different question:
“Can you afford not to implement TSP,
overhead and all?” Certainly, the other
numbers cited above leads one to the same
question.

Part Three:The Upside
of Overhead
Finally, let us look at this accounting fic-
tion called overhead. The battered diction-
ary that lives on my desk defines it this
way: “overhead n.: business expenses not
chargeable to a particular part of the
work” [5].

I like this definition for a couple of
reasons. First, it justifies my earlier tirade
on not counting reviews and inspections
as overhead, since one clearly must be
inspecting a “particular part of the work.”
Second, it arguably removes the defect
logging time from the calculations since
that too can be attributed to particular
parts of the job. The same argument
applies for most of the time logging, since
time usually is logged only against tasks
that are traceable back to a specific part of
what the TSP team is building. But for the
continued sake of the argument, let us not
fiddle with the 17.5 percent number, even
though it may be high by a few percentage
points. Let us talk instead about a subtle

connotation of the word overhead.
In current usage, overhead conveys the

sense that work so charged is somehow
not entirely necessary. Is planning unnec-
essary? What about evaluating the effec-
tiveness of the resulting plan during the
last three months and figuring out how to
do better the next time? What about
knowing on a weekly basis just how effec-
tively that plan is guiding the work, and
how much of the work you have actually
accomplished? What about gathering the
data necessary to make these judgments
about the plan? What about having the
data available to evaluate your own per-
formance objectively, and to deploy the
team’s resources most efficiently? These
are exactly the purposes of the launches,
post-mortems, weekly meetings, and data-
gathering activities of the TSP.

Is it necessary for a project team to
keep track of changing requirements?
What about having common standards for
design representation and coding? What
about maintaining a view towards testing
the system throughout the life cycle?
These are all activities for some of the
TSP role managers.

I have seen organizations create entire
staffs to plan or to evaluate effectiveness,
or to track time and defects, or to perform
many of the other functions questioned
above. While having such overhead posi-
tions may indeed be necessary in a partic-
ular organization, I like the TSP overhead
model, which features the people who are
doing the work also doing that little bit
extra that actually helps them do the work
more effectively and efficiently. TSP over-
head performs necessary project functions
regardless of the size of the organization,
and can also help the people responsible
for planning, evaluating, and tracking do
their own jobs more effectively by freeing
them to deal with the cross-project and
other organizational issues that they are
intended to address.

On balance, I prefer the overhead that
the TSP brings to the table. A project team
managing and measuring its own work
against its own commitments, and getting
results like those previously cited, seems
to have no need to apologize for its prac-
tices or to justify what percentage of the

Launches and re-launches 5.0%
Post-mortems 1.5%
Weekly team meetings 2.5%
Time logging 2.5%
Defect logging 1.0%
Role manager tasks 5.0%
Total 17.5%

Table 1: Total Overhead Amounts

“TSP overhead performs
necessary project

functions regardless
of the size of

the organization ...”

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering September 2002

time they take to execute.◆

Acknowledgements
My thanks to Jim Porter of Tyco
Electronics whose e-mail initially
launched part of the preceding rant. My
teammate on the TSP Initiative team at
the SEI, Marsha Pomeroy-Huff, also pro-
vided the odd prod or two and edited my
composition perhaps a little too gleefully.
Finally, Anita Carleton of the SEI provid-
ed just the right push at just the right time
to get me started, which is always the
hardest part.

References
1. Paulk, Mark, B. Curtis, M. Chrissis, and

C. Weber. The Capability Maturity
Model: Guidelines for Improving the
Software Process. Addison-Wesley,
1995.

2. Pavlik, Rich, and C. Riall. Integrating
PSP SM, TSP SM and Six Sigma at
Honeywell. Software Engineering
Process Group 2002 Conference
Proceedings (CD-ROM). Carnegie
Mellon University, 2002.

3. Ciurczak, John. The Quiet Quality
Revolution at EBS Dealing Resources,
Inc. Software Engineering Process
Group 2002 Conference Proceedings
(CD-ROM). Carnegie Mellon Univer-
sity, 2002.

4. McAndrews, Donald. The Team
Software Process (TSP): An Overview
and Preliminary Results of Using
Disciplined Practices. CMU/SEI-
2000-TR-15. Carnegie Mellon Univer-
sity, 2000.

5. The New Merriam-Webster Pocket
Dictionary. Simon and Schuster, 1971.

About the Author

Jim McHale joined the
Software Engineering
Institute in 1999. He has
more than 20 years of
experience, mainly in
real-time control and

supervisory systems in the transporta-
tion, steel, plastics, machine tool, and
power generation industries. He has
acted as software engineer, systems
engineer, hardware engineer, project
leader, and product manager. Since
1996, McHale has been a Capability
Maturity Model® (CMM®)-Based
Appraisal for Internal Process
Improvement assessment team mem-
ber, Software Engineering Process
Group member, Personal Software
Process instructor, and Team Software
ProcessSM (TSPSM) launch coach.
Currently he is focusing on using the
TSP to accelerate CMM-based improve-
ment, and on adapting the TSP to
enhance the effectiveness of other SEI
initiatives, including commercial off-
the-shelf systems. McHale has a bache-
lor’s degree in electrical engineering
from the University of Pittsburgh.

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Ave.
Pittsburgh, PA 15213-3890
Phone: (412) 269-3948
E-mail: jdm@sei.cmu.edu

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUL2001 � TESTING & CM

AUG2001 � SW AROUND THE WORLD

SEP2001 � AVIONICS MODERNIZATION

JAN2002 � TOP 5 PROJECTS

MAR2002 � SOFTWARE BY NUMBERS

APR2002 � RISKY REQUIREMENTS

MAY2002 � FORGING THE FUTURE OF DEF

JUN2002 � SOFTWARE ESTIMATION

AUG2001 � SOFTWARE ACQUISITION

To Request Back Issues on Topics Not

Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@

hill.af.mil>.

LETTER TO THE EDITOR

Dear CrossTalk Editor,

I just wanted to thank the CrossTalk

staff and the authors for the April 2002
edition “Risky Requirements.” I read
every article with diligence. This is a very
important issue that focuses on the most
important piece of the software puzzle,
software requirement.

Yet, in my opinion, it is the most neg-
lected. You may have the best of every-
thing: management, technical staff,
resources, budget, schedule, customers,
and even CMM® Level 5 processes. But,
if you do not have a good set of well-
defined validated requirements that are
understood and agreed to by all stake-
holders, you have absolutely NOTH-
ING.

Did I say nothing? Well, you do have
something. You have a whole lot of
something: re-work, missed schedules,
low quality, failed projects, irate manage-
ment, customer dissatisfaction, canceled
projects and additions to failure statistics.

We all know that there are no silver
bullets for software development. But, if
you have a good set of well-defined, val-
idated requirements that all stakeholders
can drive a stake into in the early stages
of development, then that is the closest
you will come to that silver bullet.
Everything else will fall easily into place
for the remainder of the life cycle. I
know. I have experienced both phenom-
enons.

Al Florence
MITRE Corp.

